3.1.84 \(\int \frac {x \log (e (\frac {a+b x}{c+d x})^n)}{f+g x+h x^2} \, dx\) [84]

3.1.84.1 Optimal result
3.1.84.2 Mathematica [A] (verified)
3.1.84.3 Rubi [A] (verified)
3.1.84.4 Maple [F]
3.1.84.5 Fricas [F]
3.1.84.6 Sympy [F(-1)]
3.1.84.7 Maxima [F(-2)]
3.1.84.8 Giac [F]
3.1.84.9 Mupad [F(-1)]

3.1.84.1 Optimal result

Integrand size = 32, antiderivative size = 685 \[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=-\frac {g \text {arctanh}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right ) \left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right )}{h \sqrt {g^2-4 f h}}+\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) n \log (a+b x) \log \left (-\frac {b \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}-\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) n \log (c+d x) \log \left (-\frac {d \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (1+\frac {g}{\sqrt {g^2-4 f h}}\right ) n \log (a+b x) \log \left (-\frac {b \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{2 h}-\frac {\left (1+\frac {g}{\sqrt {g^2-4 f h}}\right ) n \log (c+d x) \log \left (-\frac {d \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{2 h}-\frac {\left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right ) \log \left (f+g x+h x^2\right )}{2 h}+\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) n \operatorname {PolyLog}\left (2,\frac {2 h (a+b x)}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (1+\frac {g}{\sqrt {g^2-4 f h}}\right ) n \operatorname {PolyLog}\left (2,\frac {2 h (a+b x)}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{2 h}-\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) n \operatorname {PolyLog}\left (2,\frac {2 h (c+d x)}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}-\frac {\left (1+\frac {g}{\sqrt {g^2-4 f h}}\right ) n \operatorname {PolyLog}\left (2,\frac {2 h (c+d x)}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{2 h} \]

output
-1/2*(n*ln(b*x+a)-ln(e*((b*x+a)/(d*x+c))^n)-n*ln(d*x+c))*ln(h*x^2+g*x+f)/h 
+1/2*n*ln(b*x+a)*ln(-b*(g+2*h*x-(-4*f*h+g^2)^(1/2))/(2*a*h-b*(g-(-4*f*h+g^ 
2)^(1/2))))*(1-g/(-4*f*h+g^2)^(1/2))/h-1/2*n*ln(d*x+c)*ln(-d*(g+2*h*x-(-4* 
f*h+g^2)^(1/2))/(2*c*h-d*(g-(-4*f*h+g^2)^(1/2))))*(1-g/(-4*f*h+g^2)^(1/2)) 
/h+1/2*n*polylog(2,2*h*(b*x+a)/(2*a*h-b*(g-(-4*f*h+g^2)^(1/2))))*(1-g/(-4* 
f*h+g^2)^(1/2))/h-1/2*n*polylog(2,2*h*(d*x+c)/(2*c*h-d*(g-(-4*f*h+g^2)^(1/ 
2))))*(1-g/(-4*f*h+g^2)^(1/2))/h+1/2*n*ln(b*x+a)*ln(-b*(g+2*h*x+(-4*f*h+g^ 
2)^(1/2))/(2*a*h-b*(g+(-4*f*h+g^2)^(1/2))))*(1+g/(-4*f*h+g^2)^(1/2))/h-1/2 
*n*ln(d*x+c)*ln(-d*(g+2*h*x+(-4*f*h+g^2)^(1/2))/(2*c*h-d*(g+(-4*f*h+g^2)^( 
1/2))))*(1+g/(-4*f*h+g^2)^(1/2))/h+1/2*n*polylog(2,2*h*(b*x+a)/(2*a*h-b*(g 
+(-4*f*h+g^2)^(1/2))))*(1+g/(-4*f*h+g^2)^(1/2))/h-1/2*n*polylog(2,2*h*(d*x 
+c)/(2*c*h-d*(g+(-4*f*h+g^2)^(1/2))))*(1+g/(-4*f*h+g^2)^(1/2))/h-g*arctanh 
((2*h*x+g)/(-4*f*h+g^2)^(1/2))*(n*ln(b*x+a)-ln(e*((b*x+a)/(d*x+c))^n)-n*ln 
(d*x+c))/h/(-4*f*h+g^2)^(1/2)
 
3.1.84.2 Mathematica [A] (verified)

Time = 0.45 (sec) , antiderivative size = 539, normalized size of antiderivative = 0.79 \[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=\frac {\left (-g+\sqrt {g^2-4 f h}\right ) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (g-\sqrt {g^2-4 f h}+2 h x\right )+\left (g+\sqrt {g^2-4 f h}\right ) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (g+\sqrt {g^2-4 f h}+2 h x\right )+\left (g-\sqrt {g^2-4 f h}\right ) n \left (\left (\log \left (\frac {2 h (a+b x)}{-b g+2 a h+b \sqrt {g^2-4 f h}}\right )-\log \left (\frac {2 h (c+d x)}{-d g+2 c h+d \sqrt {g^2-4 f h}}\right )\right ) \log \left (g-\sqrt {g^2-4 f h}+2 h x\right )+\operatorname {PolyLog}\left (2,\frac {b \left (-g+\sqrt {g^2-4 f h}-2 h x\right )}{-b g+2 a h+b \sqrt {g^2-4 f h}}\right )-\operatorname {PolyLog}\left (2,\frac {d \left (-g+\sqrt {g^2-4 f h}-2 h x\right )}{2 c h+d \left (-g+\sqrt {g^2-4 f h}\right )}\right )\right )-\left (g+\sqrt {g^2-4 f h}\right ) n \left (\left (\log \left (\frac {2 h (a+b x)}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )-\log \left (\frac {2 h (c+d x)}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )\right ) \log \left (g+\sqrt {g^2-4 f h}+2 h x\right )+\operatorname {PolyLog}\left (2,\frac {b \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{-2 a h+b \left (g+\sqrt {g^2-4 f h}\right )}\right )-\operatorname {PolyLog}\left (2,\frac {d \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{-2 c h+d \left (g+\sqrt {g^2-4 f h}\right )}\right )\right )}{2 h \sqrt {g^2-4 f h}} \]

input
Integrate[(x*Log[e*((a + b*x)/(c + d*x))^n])/(f + g*x + h*x^2),x]
 
output
((-g + Sqrt[g^2 - 4*f*h])*Log[e*((a + b*x)/(c + d*x))^n]*Log[g - Sqrt[g^2 
- 4*f*h] + 2*h*x] + (g + Sqrt[g^2 - 4*f*h])*Log[e*((a + b*x)/(c + d*x))^n] 
*Log[g + Sqrt[g^2 - 4*f*h] + 2*h*x] + (g - Sqrt[g^2 - 4*f*h])*n*((Log[(2*h 
*(a + b*x))/(-(b*g) + 2*a*h + b*Sqrt[g^2 - 4*f*h])] - Log[(2*h*(c + d*x))/ 
(-(d*g) + 2*c*h + d*Sqrt[g^2 - 4*f*h])])*Log[g - Sqrt[g^2 - 4*f*h] + 2*h*x 
] + PolyLog[2, (b*(-g + Sqrt[g^2 - 4*f*h] - 2*h*x))/(-(b*g) + 2*a*h + b*Sq 
rt[g^2 - 4*f*h])] - PolyLog[2, (d*(-g + Sqrt[g^2 - 4*f*h] - 2*h*x))/(2*c*h 
 + d*(-g + Sqrt[g^2 - 4*f*h]))]) - (g + Sqrt[g^2 - 4*f*h])*n*((Log[(2*h*(a 
 + b*x))/(2*a*h - b*(g + Sqrt[g^2 - 4*f*h]))] - Log[(2*h*(c + d*x))/(2*c*h 
 - d*(g + Sqrt[g^2 - 4*f*h]))])*Log[g + Sqrt[g^2 - 4*f*h] + 2*h*x] + PolyL 
og[2, (b*(g + Sqrt[g^2 - 4*f*h] + 2*h*x))/(-2*a*h + b*(g + Sqrt[g^2 - 4*f* 
h]))] - PolyLog[2, (d*(g + Sqrt[g^2 - 4*f*h] + 2*h*x))/(-2*c*h + d*(g + Sq 
rt[g^2 - 4*f*h]))]))/(2*h*Sqrt[g^2 - 4*f*h])
 
3.1.84.3 Rubi [A] (verified)

Time = 1.12 (sec) , antiderivative size = 648, normalized size of antiderivative = 0.95, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {2993, 1142, 1083, 219, 1103, 2865, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx\)

\(\Big \downarrow \) 2993

\(\displaystyle -\left (\left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right ) \int \frac {x}{h x^2+g x+f}dx\right )+n \int \frac {x \log (a+b x)}{h x^2+g x+f}dx-n \int \frac {x \log (c+d x)}{h x^2+g x+f}dx\)

\(\Big \downarrow \) 1142

\(\displaystyle -\left (\left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right ) \left (\frac {\int \frac {g+2 h x}{h x^2+g x+f}dx}{2 h}-\frac {g \int \frac {1}{h x^2+g x+f}dx}{2 h}\right )\right )+n \int \frac {x \log (a+b x)}{h x^2+g x+f}dx-n \int \frac {x \log (c+d x)}{h x^2+g x+f}dx\)

\(\Big \downarrow \) 1083

\(\displaystyle -\left (\left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right ) \left (\frac {g \int \frac {1}{g^2-(g+2 h x)^2-4 f h}d(g+2 h x)}{h}+\frac {\int \frac {g+2 h x}{h x^2+g x+f}dx}{2 h}\right )\right )+n \int \frac {x \log (a+b x)}{h x^2+g x+f}dx-n \int \frac {x \log (c+d x)}{h x^2+g x+f}dx\)

\(\Big \downarrow \) 219

\(\displaystyle -\left (\left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right ) \left (\frac {\int \frac {g+2 h x}{h x^2+g x+f}dx}{2 h}+\frac {g \text {arctanh}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right )}{h \sqrt {g^2-4 f h}}\right )\right )+n \int \frac {x \log (a+b x)}{h x^2+g x+f}dx-n \int \frac {x \log (c+d x)}{h x^2+g x+f}dx\)

\(\Big \downarrow \) 1103

\(\displaystyle n \int \frac {x \log (a+b x)}{h x^2+g x+f}dx-n \int \frac {x \log (c+d x)}{h x^2+g x+f}dx-\left (\left (\frac {g \text {arctanh}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right )}{h \sqrt {g^2-4 f h}}+\frac {\log \left (f+g x+h x^2\right )}{2 h}\right ) \left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right )\right )\)

\(\Big \downarrow \) 2865

\(\displaystyle n \int \left (\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) \log (a+b x)}{g+2 h x-\sqrt {g^2-4 f h}}+\frac {\left (\frac {g}{\sqrt {g^2-4 f h}}+1\right ) \log (a+b x)}{g+2 h x+\sqrt {g^2-4 f h}}\right )dx-n \int \left (\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) \log (c+d x)}{g+2 h x-\sqrt {g^2-4 f h}}+\frac {\left (\frac {g}{\sqrt {g^2-4 f h}}+1\right ) \log (c+d x)}{g+2 h x+\sqrt {g^2-4 f h}}\right )dx-\left (\left (\frac {g \text {arctanh}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right )}{h \sqrt {g^2-4 f h}}+\frac {\log \left (f+g x+h x^2\right )}{2 h}\right ) \left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right )\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle -\left (\left (\frac {g \text {arctanh}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right )}{h \sqrt {g^2-4 f h}}+\frac {\log \left (f+g x+h x^2\right )}{2 h}\right ) \left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right )\right )+n \left (\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) \operatorname {PolyLog}\left (2,\frac {2 h (a+b x)}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (\frac {g}{\sqrt {g^2-4 f h}}+1\right ) \operatorname {PolyLog}\left (2,\frac {2 h (a+b x)}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) \log (a+b x) \log \left (-\frac {b \left (-\sqrt {g^2-4 f h}+g+2 h x\right )}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (\frac {g}{\sqrt {g^2-4 f h}}+1\right ) \log (a+b x) \log \left (-\frac {b \left (\sqrt {g^2-4 f h}+g+2 h x\right )}{2 a h-b \left (\sqrt {g^2-4 f h}+g\right )}\right )}{2 h}\right )-n \left (\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) \operatorname {PolyLog}\left (2,\frac {2 h (c+d x)}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (\frac {g}{\sqrt {g^2-4 f h}}+1\right ) \operatorname {PolyLog}\left (2,\frac {2 h (c+d x)}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (1-\frac {g}{\sqrt {g^2-4 f h}}\right ) \log (c+d x) \log \left (-\frac {d \left (-\sqrt {g^2-4 f h}+g+2 h x\right )}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{2 h}+\frac {\left (\frac {g}{\sqrt {g^2-4 f h}}+1\right ) \log (c+d x) \log \left (-\frac {d \left (\sqrt {g^2-4 f h}+g+2 h x\right )}{2 c h-d \left (\sqrt {g^2-4 f h}+g\right )}\right )}{2 h}\right )\)

input
Int[(x*Log[e*((a + b*x)/(c + d*x))^n])/(f + g*x + h*x^2),x]
 
output
-((n*Log[a + b*x] - Log[e*((a + b*x)/(c + d*x))^n] - n*Log[c + d*x])*((g*A 
rcTanh[(g + 2*h*x)/Sqrt[g^2 - 4*f*h]])/(h*Sqrt[g^2 - 4*f*h]) + Log[f + g*x 
 + h*x^2]/(2*h))) + n*(((1 - g/Sqrt[g^2 - 4*f*h])*Log[a + b*x]*Log[-((b*(g 
 - Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*a*h - b*(g - Sqrt[g^2 - 4*f*h])))])/(2*h 
) + ((1 + g/Sqrt[g^2 - 4*f*h])*Log[a + b*x]*Log[-((b*(g + Sqrt[g^2 - 4*f*h 
] + 2*h*x))/(2*a*h - b*(g + Sqrt[g^2 - 4*f*h])))])/(2*h) + ((1 - g/Sqrt[g^ 
2 - 4*f*h])*PolyLog[2, (2*h*(a + b*x))/(2*a*h - b*(g - Sqrt[g^2 - 4*f*h])) 
])/(2*h) + ((1 + g/Sqrt[g^2 - 4*f*h])*PolyLog[2, (2*h*(a + b*x))/(2*a*h - 
b*(g + Sqrt[g^2 - 4*f*h]))])/(2*h)) - n*(((1 - g/Sqrt[g^2 - 4*f*h])*Log[c 
+ d*x]*Log[-((d*(g - Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*c*h - d*(g - Sqrt[g^2 
- 4*f*h])))])/(2*h) + ((1 + g/Sqrt[g^2 - 4*f*h])*Log[c + d*x]*Log[-((d*(g 
+ Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*c*h - d*(g + Sqrt[g^2 - 4*f*h])))])/(2*h) 
 + ((1 - g/Sqrt[g^2 - 4*f*h])*PolyLog[2, (2*h*(c + d*x))/(2*c*h - d*(g - S 
qrt[g^2 - 4*f*h]))])/(2*h) + ((1 + g/Sqrt[g^2 - 4*f*h])*PolyLog[2, (2*h*(c 
 + d*x))/(2*c*h - d*(g + Sqrt[g^2 - 4*f*h]))])/(2*h))
 

3.1.84.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2865
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(RFx_), x_Sy 
mbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, RFx, x]}, 
Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFunctionQ[ 
RFx, x] && IntegerQ[p]
 

rule 2993
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.)) 
^(r_.)]*(RFx_.), x_Symbol] :> Simp[p*r   Int[RFx*Log[a + b*x], x], x] + (Si 
mp[q*r   Int[RFx*Log[c + d*x], x], x] - Simp[(p*r*Log[a + b*x] + q*r*Log[c 
+ d*x] - Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r])   Int[RFx, x], x]) /; FreeQ[ 
{a, b, c, d, e, f, p, q, r}, x] && RationalFunctionQ[RFx, x] && NeQ[b*c - a 
*d, 0] &&  !MatchQ[RFx, (u_.)*(a + b*x)^(m_.)*(c + d*x)^(n_.) /; IntegersQ[ 
m, n]]
 
3.1.84.4 Maple [F]

\[\int \frac {x \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right )}{h \,x^{2}+g x +f}d x\]

input
int(x*ln(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x)
 
output
int(x*ln(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x)
 
3.1.84.5 Fricas [F]

\[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=\int { \frac {x \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right )}{h x^{2} + g x + f} \,d x } \]

input
integrate(x*log(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x, algorithm="fricas" 
)
 
output
integral(x*log(e*((b*x + a)/(d*x + c))^n)/(h*x^2 + g*x + f), x)
 
3.1.84.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=\text {Timed out} \]

input
integrate(x*ln(e*((b*x+a)/(d*x+c))**n)/(h*x**2+g*x+f),x)
 
output
Timed out
 
3.1.84.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x*log(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x, algorithm="maxima" 
)
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*f*h-g^2>0)', see `assume?` for 
 more deta
 
3.1.84.8 Giac [F]

\[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=\int { \frac {x \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right )}{h x^{2} + g x + f} \,d x } \]

input
integrate(x*log(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x, algorithm="giac")
 
output
integrate(x*log(e*((b*x + a)/(d*x + c))^n)/(h*x^2 + g*x + f), x)
 
3.1.84.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx=\int \frac {x\,\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )}{h\,x^2+g\,x+f} \,d x \]

input
int((x*log(e*((a + b*x)/(c + d*x))^n))/(f + g*x + h*x^2),x)
 
output
int((x*log(e*((a + b*x)/(c + d*x))^n))/(f + g*x + h*x^2), x)